The metabolic network of an organism can be analyzed as a constraint-based model. This analysis can be biased, optimizing an objective such as growth rate, or unbiased, aiming to describe the full feasible space of metabolic fluxes through pathway analysis or random flux sampling. In particular, pathway analysis can decompose the flux space into fundamental and formally defined metabolic pathways. Unbiased methods scale poorly with network size due to combinatorial explosion, but a promising approach to improve scalability is to focus on metabolic subnetworks, e.g., cells' metabolite exchanges with each other and the environment, rather than the full metabolic networks. Here, we applied pathway enumeration and flux sampling to metabolite exchanges in microbial species and a microbial community, using models ranging from central carbon metabolism to genome-scale and focusing on pathway definitions that allow direct targeting of subnetworks such as metabolite exchanges (elementary conversion modes, elementary flux patterns, and minimal pathways). Enumerating growth-supporting metabolite exchanges, we found that metabolite exchanges from different pathway definitions were related through a hierarchy, and we show that this hierarchical relationship between pathways holds for metabolic networks and subnetworks more generally. Metabolite exchange frequencies, defined as the fraction of pathways in which each metabolite was exchanged, were similar across pathway definitions, with a few specific exchanges explaining large differences in pathway counts. This indicates that biological interpretation of predicted metabolite exchanges is robust to the choice of pathway definition, and it suggests strategies for more scalable pathway analysis. Our results also signal wider biological implications, facilitating detailed and interpretable analysis of metabolite exchanges and other subnetworks in fields such as metabolic engineering and synthetic biology.
Read full abstract