The constraints are the most important part of many optimization problems. The metaheuristic algorithms are designed for solving continuous unconstrained optimization problems initially. The constraint handling methods are integrated into these algorithms for solving constrained optimization problems. Penalty approaches are not only the simplest way but also as effective as other constraint handling techniques. In literature, there are many penalty approaches and these are grouped as static, dynamic and adaptive. In this study, we collect them and discuss the key benefits and drawbacks of these techniques. Tree-Seed Algorithm (TSA) is a recently developed metaheuristic algorithm, and in this study, nine different penalty approaches are integrated with the TSA. The performance of these approaches is analyzed on well-known thirteen constrained benchmark functions. The obtained results are compared with state-of-art algorithms like Differential Evolution (DE), Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), and Genetic Algorithm (GA). The experimental results and comparisons show that TSA outperformed all of them on these benchmark functions
Read full abstract