Background, Aim and Scope The use of organotin compounds as antifouling agents on ships is prohibited at EU level since 1 July 2003. Because of its persistence, the presence of organotin compounds in harbour sediment will however remain a problem for years. Dumping of dredged sediment in sea is subject to very strict quality criteria, stimulating the exploration of re-use alternatives, such as re-use on land. Within the TBT Clean project (EU LIFE Project 02/ENV/B/341) an assessment framework for re-use of organotin containing treated sediment on land as secondary granular building material was developed. Three scenarios were considered: free re-use on land, re-use above groundwater level with cover layer, and re-use under groundwater level (the latter two scenarios are referred to as restricted re-use). Receptors considered were humans, ecosystem and groundwater. Generic upper concentration limits and sediment leaching limits were calculated. Materials and Methods: Upper concentration limits were calculated with the Vlier-Humaan model. This model allows to calculate soil remediation values according to the Flemish legal framework. The focus of the methodology is the protection of human health, although a check for ecotoxicity was included in the project. The soil remediation value for residential land-use was selected within the scenario for free re-use; for restricted re-use (no direct contact possible), the soil remediation value for industrial land-use was selected. Leaching values were calculated with an analytical soil and groundwater transport model. The reference scenario behind the leaching criteria of the European Landfill Directive was modified to fit the project objectives. Default values for application height and length were used. The point-of-compliance was situated at 20 m distance in the groundwater. Physicochemical properties were taken from literature; sorption characteristics were taken from literature and were measured on 6 treated sediment samples during the project. Plant-uptake values were taken from the literature. Toxicological criteria were taken from EFSA. Results: The assessment framework provided an upper limit (SedUL) and an leaching value (SedLV) for each scenario, expressed as mg/kg dm in the sediment. Criteria were calculated for tributyltin (TBT) and dibutyltin (DBT); too few data were available for monobutyltin (MBT). The SedUL equalled 0.51 mg TBT/kg dm and 0.07 mg DBT/kg dm for free re-use and 195 mg TBT/kg dm and 205 mg DBT/kg dm for restricted re-use (two scenarios). For free re-use the SedLV was only limiting for TBT at Kd of < 2000 l/kg in the sediment. Under re-use above groundwater level with coverage SedLV values ranged from 6.9 – 29 mg TBT/kg dm and from 12 – 33.3 mg DBT/kg dm (Kd ranging from 100 – 10000 l/kg); under re-use below groundwater level SedLV values ranged from 0.007 – 0.77 mg TBT or DBT/kg dm (Kd ranging from 100 – 10000 l/kg). Discussion: Results are subject to large uncertainties because of variation in input data; the model output is sensitive to variation in plant uptake (SedUL for free re-use), Koc or Kd (SedUL for restricted re-use, SedLV for re-use with coverage), Henry's law coefficient (SedUL for restricted re-use); all these parameters show orders of magnitude variation. Conclusions: A feasible and consistent framework for evaluation of the re-use of treated organotin containing sediment was developed. However, the resulting quality criteria are still subject to large uncertainties, due to uncertainties in input data. Recommendations and Perspectives: High-quality data on plant uptake and soil sorption of organotin compounds, the influence of soil properties on these processes, and long-term terrestrial toxicity data are needed to refine the calculations. The quality criteria should be reviewed when these data become available.
Read full abstract