BackgroundObservational studies have suggested an association between birth weight and type 2 diabetes mellitus, but the causality between them has not been established. We aimed to obtain the causal relationship between birth weight with T2DM and quantify the mediating effects of potential modifiable risk factors.MethodsTwo-step, two-sample Mendelian randomization (MR) techniques were applied using SNPs as genetic instruments for exposure and mediators. Summary data from genome-wide association studies (GWAS) for birth weight, T2DM, and a series of fatty acids traits and their ratios were leveraged. The inverse variance weighted (IVW) method was the main analysis approach. In addition, the heterogeneity test, horizontal pleiotropy test, Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) test, and leave-one-out analysis were carried out to assess the robustness.ResultsThe IVW method showed that lower birth weight raised the risk of T2DM (β: −1.113, 95% CI: −1.573 ∼ −0.652). Two-step MR identified 4 of 17 candidate mediators partially mediating the effect of lower birth weight on T2DM, including ratio of polyunsaturated fatty acids to monounsaturated fatty acids (proportion mediated: 7.9%), ratio of polyunsaturated fatty acids to total fatty acids (7.2%), ratio of omega-6 fatty acids to total fatty acids (8.1%) and ratio of linoleic acid to total fatty acids ratio (6.0%).ConclusionsOur findings supported a potentially causal effect of birth weight against T2DM with considerable mediation by modifiable risk factors. Interventions that target these factors have the potential to reduce the burden of T2DM attributable to low birth weight.
Read full abstract