With special reference to the modelling of hot roll bonding, new experimental procedures to measure the resulting bond strength for a combination of AA6016 and AA8079 aluminum alloys at elevated temperatures and various strain rates using laboratory tests are proposed. The data acquired by this procedure is used to developed and calibrate a semi-empirical model, which accurately predicts the resulting bond strength within an error of 2 MPa on average. It is shown that the bond strength generally follows the flow stress regarding the dependency on temperature and strain. Additionally, inter-pass times can increase the bond strength, provided that both a suitable temperature and timespan are realized. Contrary, multiple consecutive height reductions were found to reduce the bond strength.
Read full abstract