Kimberlite pipes from Chidliak, Baffin Island, Nunavut, Canada host surface-derived Paleozoic carbonate xenoliths containing conodonts. Conodonts are phosphatic marine microfossils that experience progressive, cumulative and irreversible colour changes upon heating that are experimentally calibrated as a conodont colour alteration index (CAI). CAI values permit us to estimate the temperatures to which conodont-bearing rocks have been heated. Conodonts have been recovered from 118 samples from 89 carbonate xenoliths collected from 12 of the pipes and CAI values within individual carbonate xenoliths show four types of CAI distributions: (1) CAI values that are uniform throughout the xenolith; (2) lower CAIs in core of a xenolith than the rim; (3) CAIs that increase from one side of the xenolith to the other; and, (4) in one xenolith, higher CAIs in the xenolith core than at the rim. We have used thermal models for post-emplacement conductive cooling of kimberlite pipes and synchronous heating of conodont-bearing xenoliths to establish the temperature–time history of individual xenoliths within the kimberlite bodies. Model results suggest that the time-spans for xenoliths to reach the peak temperatures recorded by CAIs varies from hours for the smallest xenoliths to 2 or 3 years for the largest xenoliths. The thermal modelling shows the first three CAI patterns to be consistent with in situ conductive heating of the xenoliths coupled to the cooling host kimberlite. The fourth pattern remains an anomaly.
Read full abstract