Previous resting-state functional magnetic resonance imaging studies on intracerebral hemorrhage patients have focused more on the static characteristics of brain activity, while the time-varying effects during scanning have received less attention. Therefore, the current study aimed to explore the dynamic functional network connectivity changes of intracerebral hemorrhage patients. Using independent component analysis, the sliding window approach, and the k-means clustering analysis method, different dynamic functional network connectivity states were detected from resting-state functional magnetic resonance imaging data of 37 intracerebral hemorrhage patients and 44 healthy controls. The inter-group differences in dynamic functional network connectivity patterns and temporal properties were investigated, followed by correlation analyses between clinical scales and abnormal functional indexes. Ten resting-state networks were identified, and the dynamic functional network connectivity matrices were clustered into four different states. The transition numbers were decreased in the intracerebral hemorrhage patients compared with healthy controls, which was associated with trail making test scores in patients. The cerebellar network and executive control network connectivity in State 1 was reduced in patients, and this abnormal dynamic functional connectivity was positively correlated with the animal fluency test scores of patients. The current study demonstrated the characteristics of dynamic functional network connectivity in intracerebral hemorrhage patients and revealed that abnormal temporal properties and functional connectivity may be related to the performance of different cognitive domains after ictus. These results may provide new insights into exploring the neurocognitive mechanisms of intracerebral hemorrhage.
Read full abstract