BackgroundIn this study, we used targeted next-generation sequencing (NGS) to investigate the genetic basis of congenital hypothyroidism (CH) in a 19-year-old Tunisian man who presented with severe hypothyroidism and goiter.Case presentationThe propositus reported the appearance of goiter when he was 18. Importantly, he did not show signs of mental retardation, and his growth was proportionate. A partial organification defect was detected through the perchlorate-induced iodide discharge test. NGS identified a novel homozygous mutation in exon 18 of the SLC26A7 gene (P628Qfs*11), which encodes for a new iodide transporter. This variant is predicted to result in a truncated protein. Notably, the patient's euthyroid brother was heterozygous for the same mutation. No renal acid–base abnormalities were found and the administration of 1 mg of iodine failed to correct hypothyroidism.ConclusionsWe described the first case of goitrous CH due to a homozygous mutation of the SLC26A7 gene diagnosed during late adolescence.