In this study, we aimed to investigate tibiofemoral and allograft loading parameters after OCA transplantation using tibial plateau shell grafts to characterize the clinically relevant biomechanics that may influence joint kinematics and OCA osseointegration after transplantation. The study was designed to test the hypothesis that there are significant changes in joint loading after tibial plateau OCA transplantation that may require unique post-operative rehabilitation regimens in patients to restore balance in the knee joint.Fresh-frozen cadaveric knees (n=6) were thawed and mounted onto a 6 DOF KUKA robot. Specimens were size matched to +2 mm for the medial-to-lateral width of the medial tibial hemiplateaus. Three specimens served as allograft recipient knees and three served as donor knees. Recipient knees were first tested in their native state and then tested with size-matched medial tibial hemiplateau shell grafts (n=3) prepared from the donor knees using custom-cut tab-in-slot and subchondral drilling techniques. Tekscan sensors were placed in the joint spaces to evaluate the loading conditions under 90N biaxial loading at full extension of the knee before and after graft placement. The I-Scan system used in conjunction analyzed the total force, pressure distribution, peak pressure, and center of force within the joint space.Data demonstrated significant difference (p<0.05) in joint space loading after graft implantation compared to controls in both lateral and medial tibial plateaus. The I-Scan pressure mapping system displayed changes in femoral condylar contact points as well.The results demonstrated that joint space loading was significantly different (p<0.05) between all preoperative and postoperative cadaveric specimens. Despite the best efforts to size match grafts, slight differences in the host's joint geometry resulted in shifts of contact areas between the tibial plateau and femoral condyle therefore causing either an increase or decrease in pressure measured by the sensor. This concludes that accuracy in graft size matching is extremely important to restoring close to normal loading across the joint and this can be further ensured through postoperative care customized to the patient after OCA surgery.