The space environment presents unique stressors, such as microgravity and space radiation, which can induce molecular and physiological changes in living organisms. To identify key reproducible transcriptomic features and explore potential biological roles in space-flown C. elegans, we integrated transcriptomic data from C. elegans subjected to four spaceflights aboard the International Space Station (ISS) and identified 32 reproducibly differentially expressed genes (DEGs). These DEGs were enriched in pathways related to the structural constituent of cuticle, defense response, unfolded protein response, longevity regulation, extracellular structural organization, and signal receptor regulation. Among these 32 DEGs, 13 genes were consistently downregulated across four spaceflight conditions, primarily associated with the structural constituent of the cuticle. The remaining genes, involved in defense response, unfolded protein response, and longevity regulation pathway, exhibited distinct patterns depending on spaceflight duration: they were downregulated during short-term spaceflights but upregulated during long-term spaceflights. To explore the potential space stressors responsible for these transcriptomic changes, we performed qRT-PCR experiments on C. elegans exposed to simulated microgravity and low-dose radiation. Our results demonstrated that cuticle-related gene expression was significantly downregulated under both simulated microgravity and low-dose radiation conditions. In contrast, almost all genes involved in defense response, unfolded protein response, and longevity regulation pathway were downregulated under simulated microgravity but upregulated under low-dose radiation exposure. These findings suggest that both microgravity and space radiation inhibit cuticle formation; microgravity as the primary stressor inhibit defense response, unfolded protein response, and longevity regulation pathway during short-term spaceflights, while space radiation may promote these processes during long-term spaceflights. In summary, through integrated spaceflight transcriptomic analyses and simulated space experiments, we identified key transcriptomic features and potential biological functions in space-flown C. elegans, shedding light on the space stressors responsible for these changes. This study provides new insights into the molecular and physiological adaptations of C. elegans to spaceflight, highlighting the distinct impacts of microgravity and space radiation.
Read full abstract