Purpose This study aims to examine the spillover effects of the mean and volatility between oil prices and stock indices of six Gulf Cooperation Council (GCC) countries (UAE, Kuwait, Saudi Arabia, Qatar, Oman and Bahrain). Design/methodology/approach Over the period 2008–2019, a bivariate VARMA-GARCH-ADCC model was combined with the maximal overlap discrete wavelet transform technique filter to shed light on a wide range of possible spillover effects in the mean and variances of level prices at various time horizons. Findings The authors find that the spillover effects between oil prices and the GCC stock markets are time-varying and spread across various time horizons. Besides, oil prices and stock market indices are directly impacted by their own shocks and variations and indirectly influenced by other price volatilities and wavelet scales. The linkages in volatility spillovers between oil prices and the GCC stock markets occur in the short-term, midterm and long-term horizons. More specifically, the results also show that the asymmetric estimates are statistically significant for the associations between oil prices and each stock market in the GCC countries. This implies that negative shocks play a more vital role than positive shocks in driving the dynamic condition correlations between oil and stock markets under study. Practical implications The significant interrelatedness between oil prices and each stock market in the GCC countries has important implications for investors, portfolio managers, and other market participants. They can use the findings of this research to create the best oil-GCC stock portfolios and predict more precisely the volatility spillover patterns in constructing their hedging strategies. Originality/value In several ways, this study differs from previous research. First, while previous empirical studies of the dynamic link between oil prices and stock markets have focused primarily on developed or emerging markets, the focus of this is on six GCC countries. Second, the linkage between oil prices and stock markets is typically studied at the original data level in the time domain in relevant literature, while frequency information is overlooked. Therefore, the current study examines this relationship from a multiscale perspective. Third, in this paper, to capture a wide range of possible spillover effects in the mean and variance of level prices at multiple wavelet scales, the authors use a VARMA-GARCH-ADCC model in conjunction with wavelet multiresolution analysis. Additionally, this article also applies wavelet hedge ratio and wavelet hedge portfolio analysis at various time horizons.
Read full abstract