<p style='text-indent:20px;'>In this article, we propose a new over-penalized weak Galerkin (OPWG) method with a stabilizer for second-order elliptic problems. This method employs double-valued functions on interior edges of elements instead of single-valued ones and elements <inline-formula><tex-math id="M1">\begin{document}$ (\mathbb{P}_{k}, \mathbb{P}_{k}, [\mathbb{P}_{k-1}]^{d}) $\end{document}</tex-math></inline-formula>, or <inline-formula><tex-math id="M2">\begin{document}$ (\mathbb{P}_{k}, \mathbb{P}_{k-1}, [\mathbb{P}_{k-1}]^{d}) $\end{document}</tex-math></inline-formula>, with dimensions of space <inline-formula><tex-math id="M3">\begin{document}$ d = 2, \; 3 $\end{document}</tex-math></inline-formula>. The method is absolutely stable with a constant penalty parameter, which is independent of mesh size and shape-regularity. We prove that for quasi-uniform triangulations, condition numbers of the stiffness matrices arising from the OPWG method are <inline-formula><tex-math id="M4">\begin{document}$ O(h^{-\beta_{0}(d-1)-1}) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ \beta_{0} $\end{document}</tex-math></inline-formula> being the penalty exponent. Therefore we introduce a new <i>mini-block diagonal</i> preconditioner, which is proven to be theoretically and numerically effective in reducing the condition numbers of stiffness matrices to the magnitude of <inline-formula><tex-math id="M6">\begin{document}$ O(h^{-2}) $\end{document}</tex-math></inline-formula>. Optimal error estimates in a discrete <inline-formula><tex-math id="M7">\begin{document}$ H^1 $\end{document}</tex-math></inline-formula>-norm and <inline-formula><tex-math id="M8">\begin{document}$ L^2 $\end{document}</tex-math></inline-formula>-norm are established, from which the optimal penalty exponent can be easily chosen. Several numerical examples are presented to demonstrate flexibility, effectiveness and reliability of the new method.
Read full abstract