A long-term study was conducted on double-lap spruce wood-concrete joints to investigate their shear strength and stiffness over a 12-month period. These joints were manufactured using both wet and dry processes, each incorporating two adhesive types for bonding the wood to the concrete: a brittle epoxy and a ductile polyurethane (PUR). The experimental design exposed the joints to three specific long-term environments: (1) outdoor exposure, (2) indoor conditions with applied load, and (3) outdoor conditions with applied load. The wood-concrete joints exposed to outdoor conditions were subjected to destructive shear testing at intervals of 0 (serving as the reference sample), 2, 4, 6, and 12 months, respectively. For joints subjected to both indoor and outdoor conditions with shear loading, the shear deformation of joints was monitored continuously over the 12 months before performing the destructive tests. A gradual reduction in the shear stiffness and strength of dry joints (produced using the dry bond method) exposed to outdoor conditions was observed over a 12-month period, primarily due to bond failure at the concrete-adhesive interface. The wet joints exhibited no degradation in shear stiffness and strength across long-term conditions over the same period. The bond failure observed in dry joints was predominantly associated with stresses arising from dimensional changes in the wood. No degradation was found in the cross-linking density of the adhesive or in the concrete's compressive stiffness and strength.
Read full abstract