Privacy in our digital world is a very complicated topic, especially when meeting cloud computing technological achievements with its multidimensional context. Here, privacy is an extended concept that is sometimes referred to as legal, philosophical, or even technical. Consequently, there is a need to harmonize it with other aspects in health care in order to provide a new ecosystem. This new ecosystem can lead to a paradigm shift involving the reconstruction and redesign of some of the most important and essential requirements like privacy concepts, legal issues, and security services. Cloud computing in the health domain has markedly contributed to other technologies, such as mobile health, health Internet of Things, and wireless body area networks, with their increasing numbers of embedded applications. Other dependent applications, which are usually used in health businesses like social networks, or some newly introduced applications have issues regarding privacy transparency boundaries and privacy-preserving principles, which have made policy making difficult in the field. One way to overcome this challenge is to develop a taxonomy to identify all relevant factors. A taxonomy serves to bring conceptual clarity to the set of alternatives in in-person health care delivery. This study aimed to construct a comprehensive taxonomy for privacy in the health cloud, which also provides a prospective landscape for privacy in related technologies. A search was performed for relevant published English papers in databases, including Web of Science, IEEE Digital Library, Google Scholar, Scopus, and PubMed. A total of 2042 papers were related to the health cloud privacy concept according to predefined keywords and search strings. Taxonomy designing was performed using the deductive methodology. This taxonomy has 3 layers. The first layer has 4 main dimensions, including cloud, data, device, and legal. The second layer has 15 components, and the final layer has related subcategories (n=57). This taxonomy covers some related concepts, such as privacy, security, confidentiality, and legal issues, which are categorized here and defined by their expansion and distinctive boundaries. The main merits of this taxonomy are its ability to clarify privacy terms for different scenarios and signalize the privacy multidisciplinary objectification in eHealth. This taxonomy can cover health industry requirements with its specifications like health data and scenarios, which are considered as the most complicated among businesses and industries. Therefore, the use of this taxonomy could be generalized and customized to other domains and businesses that have less complications. Moreover, this taxonomy has different stockholders, including people, organizations, and systems. If the antecedent effort in the taxonomy is proven, subject matter experts could enhance the extent of privacy in the health cloud by verifying, evaluating, and revising this taxonomy.