Cellular automata can be used to analyze a physical system which is satisfying differential equations. A cellular automata program for a thermal analysis of hydration heat was developed. Based on the fundamental theory of cellular automata, the heat conduction equation was deduced for validating the cellular automata approach. By introduction of the concept of equivalent time, the variation of the chemical reaction rate of hydration heat with temperature was studied by use of the Arrhenius function. The relationship between the adiabatic temperature rise and equivalent time was determined by analyzing testing data.A parametric analysis of ambient temperature and concrete slab thickness was also conducted. The temperature rise of concrete increases with increasing ambient temperature and thickness of the slab.
Read full abstract