Electrochemical biosensors are valued for their sensitivity and selectivity in detecting biological molecules. Having the advantage of generating signals that can be directly or indirectly proportional to the concentration of the target analyte, these biosensors can achieve specificity by utilizing a specific biorecognition surface designed to recognize the target molecule. Electrochemical biosensors have garnered substantial attention, as they can be used to fabricate compact, cost-effective devices, making them promising candidates for point-of-care testing (POCT) devices. This study introduces a label-free electrochemical biosensor employing a gold screen-printed electrode (SPE) to detect lysophosphatidic acid (LPA), a potential early ovarian cancer biomarker. We employed the gelsolin–actin system, previously introduced by our group, in combination with fluorescence spectrometry, as a biorecognition element to detect LPA. By immobilizing a gelsolin–actin complex on an SPE, we were able to quantify changes in current intensity using cyclic voltammetry and differential pulse voltammetry, which was directly proportional to the LPA concentration in the solution. Our results demonstrate the high sensitivity of the developed biosensor for detecting LPA in goat serum, with a limit of detection (LOD) and a limit of quantification (LOQ) of 0.9 µM and 2.76 µM, respectively, highlighting its potential as a promising tool for early-stage diagnosis of ovarian cancer.
Read full abstract