We examined the impact of perinatal factors on cord serum club cell protein (CC16) and the association of CC16 with mechanical ventilation and bronchopulmonary dysplasia (BPD) in preterm neonates. A retrospective cohort study including 60 neonates born with gestational age (GA) < 34 weeks. The impact of categorical perinatal factors on cord blood levels of CC16 was examined with univariate and multivariate regression analyses. In neonates with GA < 32 weeks, cord blood CC16 concentrations were significantly lower compared to neonates with GA between 320/7 and 336/7 weeks (5.4 ± 2.5 compared to 7.6 ± 2.9 ng/mL, p = 0.039). Neonates with prolonged rupture of membranes had significantly lower CC16 compared to those without prolonged rupture of membranes (4.0 ± 1.9 compared to 7.2 ± 2.2, p < 0.001). Finally, neonates with BPD had significantly lower CC16, compared to neonates without BPD (4.2 ± 2.1 compared to 7.0 ± 2.2 ng/mL, p = 0.004).Prolonged rupture of membranes was significantly negatively associated with CC16 (b = -2.67, 95% confidence interval [CI] -0.49 to -4.85, p = 0.017), after adjusting for GA (b = 0.23, 95% CI 0.03-0.42, p = 0.022), mode of conception, and mode of delivery. Finally, higher CC16 levels were significantly inversely associated with BPD (odds ratio = 0.33, 95% CI 0.12-0.88, p = 0.028), after adjusting for GA (b = 0.27, 95% CI 0.09-0.78, p = 0.015), and birth weight. Prolonged rupture of membranes was significantly negatively associated with cord serum CC16, after adjusting for GA, conception, and delivery mode, and CC16 was significantly inversely associated with BPD, after adjusting for GA and birth weight. · Neonates with prolonged rupture of membranes had lower CC16 levels.. · CC16 was significantly negatively associated with BPD.. · CC16 could be a biomarker of lung injury and BPD..
Read full abstract