Fiber single-frequency lasers are currently being actively developed, primarily due to the growing number of applications that require compact and reliable narrow-band sources. However, the most developed single-frequency fiber lasers based on phosphate fibers have the disadvantages of low mechanical strength of both the phosphate fibers themselves and their splices. In this paper we demonstrate a single-frequency laser based on a new composite Yb3+-doped active fiber. The core of this fiber is made of phosphate glass with a high concentration of ytterbium ions and its cladding is made of standard silica glass. This structure ensures a higher splicing strength of the fiber compared to the phosphate fibers and provides high resistance to atmospheric moisture. Despite the multimode structure of this fiber, we achieved stable single-frequency lasing with an average power of 10 mW and a spectral contrast of more than 60 dB in the scheme with a short (1.1 cm) cavity formed by two fiber Bragg gratings. We believe that further optimization of this fiber will make it possible to create powerful and reliable single-frequency lasers in the one-micron wavelength range.
Read full abstract