PurposeQuantifying unencapsulated drug concentrations in tissues is crucial for understanding the mechanisms underlying the efficacy and safety of liposomal drugs; however, the methodology for this has not been fully established. Herein, we aimed to investigate the enhanced therapeutic potential of a pegylated liposomal formulation of topotecan (FF-10850) by analyzing the concentrations of the unencapsulated drug in target tissues, to guide the improvement of its dosing regimen.MethodsWe developed a method for measuring unencapsulated topotecan concentrations in tumor and bone marrow interstitial fluid (BM-ISF) and applied this method to pharmacokinetic assessments. The ratios of the area under the concentration–time curves (AUCs) between tumor and BM-ISF were calculated for total and unencapsulated topotecan. DNA damage and antitumor effects of FF-10850 or non-liposomal topotecan (TPT) were evaluated in an ES-2 mice xenograft model.ResultsFF-10850 exhibited a much larger AUC ratio between tumor and BM-ISF for unencapsulated topotecan (2.96), but not for total topotecan (0.752), than TPT (0.833). FF-10850 promoted milder DNA damage in the bone marrow than TPT; however, FF-10850 and TPT elicited comparable DNA damage in the tumor. These findings highlight the greater tumor exposure to unencapsulated topotecan and lower bone marrow exposure to FF-10850 than TPT. The dosing regimen was successfully improved based on the kinetics of unencapsulated topotecan and DNA damage.ConclusionsTissue pharmacokinetics of unencapsulated topotecan elucidated the favorable pharmacological properties of FF-10850. Evaluation of tissue exposure to an unencapsulated drug with appropriate pharmacodynamic markers can be valuable in optimizing liposomal drugs and dosing regimens.
Read full abstract