Alpha-cypermethrin, a pyrethroid pesticide, is frequently used on crops to prevent insect attacks. However, occasionally, due to drift, leaching, or with rainwater, it enters the aquatic environment and poses a serious threat to the growth of non-target aquatic organisms. In the current study, we were interested in investigating the damaging effect of alpha-cypermethrin on a local freshwater non-target green alga Chlorella sp. NC-MKM in terms of its protein levels. This was achieved by exposing Chlorella sp. NC-MKM to an EC50 concentration of alpha-cypermethrin for 1day, followed by the two-dimensional (2-D) gel electrophoresis and MALDI-TOF MS. Fifty-three proteins, which had showed significant differential accumulation (> 1.5 fold, P < 0.05) after exposure to alpha-cypermethrin, were considered as differentially accumulated proteins (DAPs). These DAPs were further divided into several functional categories, and the expressions of each in control and treatment samples were compared. Comparison revealed that alpha-cypermethrin exposure affects the accumulation of proteins related with photosynthesis, stress response, carbohydrate metabolism, signal transduction and transporters, translation, transcription, cell division, lipid metabolism, amino acid and nucleotide biosynthesis, secondary metabolites production, and post-translational modification, and thus rendered the tested algal isolate sensitive toward this pesticide. The overall findings of this research thus offer a fundamental understanding of the possible mechanism of action of the insecticide alpha-cypermethrin on the microalga Chlorella sp. NC-MKM and also suggest potential biomarkers for the investigation of pesticide exposed microalgae.
Read full abstract