AbstractIn this work, electrically conductive thermoplastic elastomeric blend composite films based on polystyrene (PS)/ethylene‐co‐methyl acrylate (EMA) filled with functionalized graphene were developed via the solution mixing technique. Morphological analysis revealed that selective localization of amine‐functionalized reduced graphene oxide (G‐ODA) sheets in the EMA phase of co‐continuous binary blend formed a well‐connected dense conductive pathway by graphene sheets ultimately facilitating the double percolation phenomenon. The electrical percolation threshold was achieved at ~2 wt% of G‐ODA loading which was much lower than that for both single polymer composites. An electrical conductivity of 0.9 S/cm was obtained for blend composite film with 10 wt% of graphene concentration whereas for the same filler loading, PS and EMA composites exhibited electrical conductivity of 1.9 × 10−1 and 2.3 × 10−1 S/cm, respectively. The obtained thermal conductivity of the blend composite with 10 wt% of G‐ODA loading was 0.95 W/m K with 400% enhancement compared to the neat blend system. The same composite exhibited increased real and imaginary permittivity of 92 and 83, respectively. The electrical percolation threshold is well‐correlated with the percolation concentration found from storage modulus and thermal conductivity data. The fabricated PS/EMA blend composite film exhibited absorption‐dominant electromagnetic interference SE of −25 and − 35 dB in X‐band frequency (8.2–12.4 GHz) for 10 wt% of graphene loading with a sample thickness of 0.5 and 1 mm, respectively.
Read full abstract