In this article, we discuss a new system of fractional differential equations \t\t\t{D0+s1u(t)+f(t,u(t),v(t))=z1(t),0<t<1,D0+s2v(t)+g(t,u(t),v(t))=z2(t),0<t<1,u(0)=u(1)=u′(0)=u′(1)=0,D0+β1u(0)=0,D0+β1u(1)=b1D0+β1u(η1),v(0)=v(1)=v′(0)=v′(1)=0,D0+β2v(0)=0,D0+β2v(1)=b2D0+β2v(η2),\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$ \\textstyle\\begin{cases} D_{0^{+}}^{s_{1}} u(t) + f(t,u(t),v(t))=z_{1}(t), \\quad 0< t< 1, \\\\ D_{0^{+}}^{s_{2}} v(t) + g(t,u(t),v(t))=z_{2}(t), \\quad 0< t< 1, \\\\ u(0)=u(1)=u^{\\prime }(0)=u^{\\prime }(1)=0, \\qquad D_{0^{+}}^{\\beta _{1}} u(0)=0, \\qquad D_{0^{+}}^{\\beta _{1}} u(1)= b_{1} D_{0^{+}}^{\\beta _{1}} u(\\eta _{1}), \\\\ v(0)=v(1)=v^{\\prime }(0)=v^{\\prime }(1)=0, \\qquad D_{0^{+}}^{\\beta _{2}} v(0)=0, \\qquad D_{0^{+}}^{\\beta _{2}} v(1)= b_{2} D_{0^{+}}^{\\beta _{2}} v(\\eta _{2}), \\end{cases} $$\\end{document} where s_{i}=alpha _{i}+beta _{i}, alpha _{i} in (1,2], beta _{i} in (3,4], z_{i} :[0,1]rightarrow [0,+infty ) is continuous, D_{0^{+}}^{alpha _{i}} and D_{0^{+}}^{beta _{i}} are the standard Riemann–Liouville derivatives, eta _{i} in (0,1), b_{i} in (0, {eta _{i}}^{1-alpha _{i}}), i=1,2, and f,gin C([0,1]times mathbf{R}^{2} , mathbf{R}). We establish the existence and uniqueness of solutions for the problem by a recent fixed point theorem of increasing Ψ-(h,e)-concave operators defined on ordered sets. Furthermore, the results obtained are well proven by means of a specific example.
Read full abstract