Reinforced soil retaining wall are ground structures that can be readily seen all around us. The development of reinforcements to these walls and their demand have increased rapidly. These walls are advantageous because they can be used not only in simple construction compared with reinforced concrete retaining walls but also when the height of the wall needs to be higher. However, unlike reinforced concrete retaining walls, in which the walls are integrated and resist the earth pressure on the back, the block-type reinforced earth retaining wall method secures its structural stability by frictional force between the buried land and reinforcements. A phenomenon in which a block is cracked or dropped owing to deformation has been frequently reported. In particular, this phenomenon is concentrated at the curved parts of a reinforced soil retaining wall and is mainly known as a stress concentration. However, to date, the design of reinforced soil retaining walls has been limited by the two-dimensional plane strain condition and has not considered the characteristics of the curved part. There is a lack of research on curved part. Therefore, this research determines the behavioural characteristics of curved-part reinforced soil retaining walls with regard to the shape (convex or concave) and angle (60°, 90°, 120°, and 150°). The displacement generated in the straight part and the curved part was analysed through an Laboratory Scale Test. The results showed that the horizontal displacement of the curved part increases as a convex angle becomes smaller, and the horizontal displacement of the curved part decreases as a concave angle becomes smaller. At the center (D and H have the same length, but H represents the height and D represents the separation distance from the center of the curved part) of the convex curve, the horizontal displacement of the 0.5 D section decreased to 13.8%; it decreased to 41.0% in the 1.0 D section. For concave angles, it was revealed that the horizontal displacement from the center 0.0 D to the 0.5 D section of the curved part increased by 25%, and from the 1.0 D section, by 75%. It was confirmed that the displacement difference was largely based on the value of 0.5 D. It was judged that this can be used as basic data for the design and construction guidelines for reinforced soil retaining wall of reinforced soil retaining walls.
Read full abstract