Using the bilinear neural network method (BNNM) and the symbolic computation system Mathematica, this paper explains how to find an exact solution for the (2+1)-dimensional Korteweg–de Vries–Sawada–Kotera–Ramani (KdVSKR) equation. In terms of activation function and weight coefficient, BNNM is a more appealing option for users than traditional symbolic computation methods. It is possible to develop a wide range of solutions and expand the classes of exact solutions by modifying the activation function. The activation function’s versatility allows it to generate a wide range of solutions with several theoretical and practical uses. The analytical solution is obtained by using a double layer type, while the rogue wave solution and mixed solutions are obtained by using a single layer type. The evolution of these waves is then illustrated using various 3D graphs, 2D graphs, and density plots.
Read full abstract