Abstract The accurate health condition evaluation of the functional components in computer numerical control (CNC) machine tools is an important prerequisite for predictive maintenance and fault warning. The vibration signals of the functional components in CNC machine tools often contain substantial noise, impeding the extraction of relevant health condition information from the vibration signals. This work presents an approach that leverages the variational mode decomposition (VMD) enhanced by the Artificial Hummingbird Algorithm (AHA) alongside the Light Gradient Boosting Machine (LightGBM) optimised through particle swarm optimisation (PSO) to evaluate the health condition of the functional components in CNC machine tools amidst pervasive noise. Initially, the AHA optimised the penalty factor (α) and the decomposition layer (K) within the VMD. This optimised VMD was subsequently applied to denoise the original vibration signals. After this denoising process, PSO was employed to optimise the learning rate and maximum tree depth within LightGBM. Health condition evaluation experiments were executed on the feed system and spindle of the CNC machine tool to validate the proposed methodology. Comparative analysis indicates that the proposed method attains paramount accuracy and computational efficiency, which are crucial for accurately evaluating the health condition of the functional components in CNC machine tools.
Read full abstract