Iron(II) tris-bipyridine, [FeII(bpy)3]2+, is a historically significant organometallic coordination complex with attractive redox and photophysical properties. With respect to energy storage, it is a low-cost, high-redox potential complex and thus attractive for use as a catholyte in aqueous redox flow batteries. Despite these favorable characteristics, its oxidized Fe(III) form undergoes dimerization to form μ-O-[FeIII(bpy)2(H2O)]24+, leading to a dramatic ∼0.7 V decrease during battery discharge. To date, the energetics and complete mechanism of this slow, sequential electrochemical-chemical (EC) process, which includes electron transfer, nucleophilic attack, ligand cleavage, μ-oxo bond formation, and spin state transition, have not been elucidated. Using cyclic voltammetry, redox flow battery data, and density functional theory calculations guided by previously proposed mechanisms, we modeled more than 100 complexes and performed more than 50 geometry scans to resolve the key steps dictating these complex chemical processes. Quantitative free energy surfaces are developed to model the mechanism of dimerization accounting for the spins and identities of any possible Fe(II), Fe(III), or Fe(IV) intermediates. Electrochemical reduction of the dimer regenerates [FeII(bpy)3]2+ in an overall reversible process. Computational electrochemistry interrogates the influence of spin state, coordination environment, and molecular conformation at the electrode-electrolyte interface through a proposed stepwise dimer reduction process. Experimentally, we show that the considerable overpotential associated with this event can be catalytically mitigated with disparate materials, including platinum, copper hexacyanoferrate, and activated carbon. The findings are of fundamental and applied significance and could elevate [FeII(bpy)3]2+ and its derivatives to play a vital role in the burgeoning renewable energy economy.
Read full abstract