The results of four experiments on studying preliminarily statically compressed gaseous helium and deuterium during their subsequent compression in explosive spherical cascade structures providing quasi-isentropic gas compression are presented. For helium, the following parameters were achieved: in one experiment, the compression pressure is Pmean ≈ 4.9 TPa at a density ρmax ≈ 6.4 g/cm3 and the compression ratio is δ = ρ/ρ0 ≈ 320; in another experiment, Pmean ≈ 10.9 TPa, ρmax ≈ 10.3 g/cm3, and δ ≈ 470. For deuterium, these parameters are Pmean ≈ 3.4 TPa, ρmax ≈ 6.0 g/cm3, and δ ≈ 162 in one experiment and Pmean ≈ 13.3 TPa, ρmax ≈ 11.4 g/cm3, and δ ≈ 520 in another experiment. The gas density was determined by an X-ray method using the position of the boundaries of the steel shells compressing a gas. The experiments are simulated with a one-dimensional gasdynamic software package, in which the Kopyshev–Khrustalev equations of state are used for the gases under study. The pressures are determined using calculations, in which the dynamics of gas compression is satisfactorily simulated for the entire set of experiments.
Read full abstract