Learning-based denoising techniques have become superior to the traditional assumption-based denoising methods in this modern era. Also, with the advancement of wearable technologies and remote electrocardiogram (ECG) monitoring systems, the requirement for optimal storage has increased due to the limited availability of hardware resources. Therefore, denoising and compression both are essential at the preprocessing stage of the ECG signal. Deep learning-based denoising auto encoder-decoder (DAED) models guarantee cutting-edge performance for these tasks. This article presents a lightweight, adaptive, hybrid Convolutional Neural Network-Gated Recurrent Unit (CNN-GRU) based DAED model that achieves a signal compression ratio of 64 with high signal-to-noise ratio improvement for the elimination of ECG noises. The novelty of this work lies in the customization of the CNN layers and utilization of the advantages of the GRU layer in a proper channel for compression and denoising ECG signals. The comparative study with other complex deep learning-based DAED arrangements and state-of-the-art denoising techniques shows the proposed model has simplicity in construction and an improved signal-to-noise ratio with minimum mean square error.