Nowadays, the application of multicomponent coatings with multiphase nanocrystalline structure is the most promising direction in the search for wear-resistant protective coatings with a full set of necessary operational properties. Nanocrystalline multicomponent coatings based on the Ti-Al-Ta-Si-N system have a high hardness combined with thermal stability and oxidation resistance. Silicon atoms are weakly soluble in the TiN, Ti1−xAlxN, and TaN crystalline phases of the Ti-Al-Ta-Si-N system and interact preferentially with N atoms, forming the amorphous Si3N4 phase. In this context, it is important to first study the peculiarities of the interaction of Si atoms with the simplest structural units of the Ti-Al-Ta-Si-N system, such as TiN, AlN, and TaN compounds with the NaCl structure. This work is devoted to the study of the interaction of a Si atom with the (001) surface of AlN, TiN, and TaN compounds with the NaCl structure using ab initio calculations. This provides information for a deep understanding of the initial stages of the formation of different crystallites of the considered composite. It was established that the adsorption of silicon on the (001) surface of AlN, TiN, and TaN significantly increases the relaxation of the surface layers and leads to an increase in the corrugation observed on the clean surfaces. The largest corrugation is observed on the surface of the TaN compound. The most energetically favorable adsorption positions of Si atoms were found to be the position of Si above the N atom on the TiN and TaN surfaces and the quadruple coordinated position on the AlN surface. The valence electron density distribution and the crystal orbital Hamiltonian population were studied to identify the type of Si atom bonding with the (001) surface of AlN, TiN, and TaN compounds. It was found that silicon forms predominantly covalent bonds with the nearest metal and nitrogen atoms, except for the quadruple coordinated position on the surface of TiN and TaN, where there is a high degree of ionic bonding of silicon with surface atoms.