Used clear aligner trays are often indiscriminately disposed of with general plastic waste and incinerated. This study aimed to analyze the smoke composition from incinerating 2 common aligner materials: glycol-modified polyethylene terephthalate (PET-G) and polyurethane. Each of the 2 materials in triplets was thermoformed. The thermoformed trays were shredded and subjected individually to open-fire combustion, ignited using a methane torch, in a specially designed combustion chamber. The resultant smoke was collected and analyzed using gas chromatography-mass spectrometry to study its in-depth composition. A total of 20 peaks, corresponding to 20 compounds, were identified from each of the 2 material samples. O-xylene (21.06%) showed the maximum concentration in the PET-G sample, whereas 1,4-dimethyl-1,3-cyclohexadiene in polyurethane (18.88%). The first peak in the PET-G sample corresponded to benzene with a relative concentration of 5.18%. Four compounds were common to both samples: 1,4-dimethyl-1,3-cyclohexadiene; 1,3-cyclohexadiene, 2,3-dimethyl-; 1-hydroxymethly-4-methylenecyclohexane; and cyclohexanemethanol, 4-methylene-. Benzene, a group 1 carcinogen, was identified in the PET-G smoke sample, whereas tetrahydrofuran, a suspected carcinogen, was found in the polyurethane sample. Some compounds were hazardous, whereas most were skin, eye, and respiratory irritants. Possible mitigation strategies include proper case selection, efficient manufacturing, direct 3-dimensional printing, and developing biodegradable materials. Clinicians can set up 'used aligner collection points' to ensure responsible disposal. Proper disposal guidelines and stringent regulations are the need of the hour.
Read full abstract