AbstractA novel superabsorbent composite based on sodium alginate and the inorganic clay kaolin was synthesized via the graft copolymerization of acrylic acid (AA) in an aqueous medium with methylene bisacrylamide (MBA) as a crosslinking agent and ammonium persulfate (APS) as an initiator. The effects of reaction variables, such as the MBA, AA, and APS concentrations and the alginate/kaolin weight ratio, on the water absorbency of the composite were systematically optimized. Evidence of grafting and kaolin interactions was obtained by a comparison of the Fourier transform infrared spectra of the initial substrates with that of the superabsorbent composite, and the hydrogel structure was confirmed with scanning electron microscopy. The results indicated that with an increasing alginate/kaolin weight ratio, the swelling capacity and gel content increased. The effects of various salt media were also studied, along with the swelling kinetics. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007