Three-wheeled agricultural robots possess the advantages of high flexibility, strong maneuverability, and low cost. They can adapt to various complex terrains and operational environments, making them highly valuable in the fields of crop planting, harvesting, irrigation, and more. However, the horizontal stability of the three-wheeled agricultural robot chassis is compromised when working in harsh terrain, significantly impacting the overall operational quality and safety. To address this issue, this study designed a leveling system based on active suspension and proposed a stepwise leveling method based on an adaptive dual-loop composite control strategy (ADLCCS-SLM). Firstly, in the overall control of the three-wheeled chassis, a stepwise leveling method (SLM) was introduced. This method allows for rapid leveling by incrementally adjusting one or two suspensions, effectively avoiding the complex interactions between suspension components encountered in traditional methods involving the simultaneous linkage of three suspensions. Next, in terms of suspension actuator control, an adaptive dual-loop composite control strategy (ADLCCS) was proposed. This strategy employs a dual-loop composite control both internally and externally and utilizes an improved adaptive genetic algorithm to adjust critical control parameters. This adaptation optimizes the chassis leveling performance across various road conditions. Finally, the effectiveness of the proposed ADLCCS-SLM was validated through simulation and experimental testing. The test results showed that the control effect of the proposed method was significant. Compared to the traditional multi-suspension linkage leveling method based on PID, the peak values of pitch angle and roll angle were reduced by 31.8% and 33.3%, respectively.
Read full abstract