The interaction of a Ti + 10 Mo titanium alloy, which serves as a matrix in a tribological material, with calcium fluoride CaF2 and boron nitride BN, which play the role of a solid lubricant, during their heating and sintering in a vacuum of 10–3 Pa at 1150°C for 15 and 120 min, respectively, has been studied. In the heating of a Ti + 10 Mo + CaF2 model sample for 15 min and sintering of Ti + 10 Mo + CaF2 CAM1 for 120 min, calcium fluoride does not interact with the Ti + 10 Mo matrix and does not change its composition and structure; a transition layer between the matrix and solid lubricant does not form. Thus, calcium fluoride preserves its initial lubricating properties. In the sintering of Ti + 10 Mo + 13 CaF2 CAM1 for 120 min, a composite antifriction material with a microheterogeneous structure is synthesized. Its structure is a mixture of solid solutions of molybdenum in α- and β-titanium, which has a body-centered cubic lattice and face-centered hexagonal lattice, in which calcium fluoride CaF2 is distributed in the form of inclusions. In the heating of a Ti + 10 Mo + BN model sample for 15 min and sintering of Ti + 10 Mo + BN CAM2 for 120 min, the interaction of the Ti+10Mo alloy with boron nitride BN occurs to form a transition layer with the phase composition α-TiMo + TiB + TiN + BN. In the sintering of Ti + 10 Mo + BN CAM2 for 120 min, a composite material with a microheterogeneous structure is synthesized. Its structure is a solid solution of Mo in α-Ti with a face-centered hexagonal lattice, strengthened by products of interaction of titanium with nitrogen and boron, TiN and TiB, in which boron nitride BN is distributed in the form of inclusions.