Recent work has documented conjugate polycyclic hydrocarbons presenting unusual properties: accepting full on-bond electron pairing, they could be considered as closed-shell architectures, but their ground-state wave function is actually a pure diradical singlet, free of any ionic component, in contrast to diradicaloids. These so-called entangled molecules also differ from disjoint diradicals, which do not accept on-bond electron pairing, in that their singly occupied molecular orbitals (SOMOs) are spatially entangled rather than disjoint. The present work first extends the study to a broad series of architectures exhibiting the same properties, namely: they present two degenerate SOMOs in the topological Hückel Hamiltonian, and their pure diradical wave functions lead to symmetry-keeping geometries. These solutions are always of lower energy than the closed-shell solutions that break symmetry and destroy aromaticity of some six-membered rings. A topological criterion ensuring that a given conjugate hydrocarbon will behave as an entangled pure diradical is then formulated. Next, a second set of molecules is proposed, still exhibiting two degenerate Hückel SOMOs, but with smaller contrast between the energies of open-shell and closed-shell solutions. Conservation of six-membered rings aromaticity appears as the driving factor ruling the stability of diradical solutions.
Read full abstract