Ethnopharmacological relevanceCerebral ischemia-reperfusion (I/R) injury is a common complication of ischemic stroke, with autophagy and pyroptosis playing key roles. Huangqi and Danggui (HQDG) are a commonly used drug pair of Chinese traditional medicine for clinical treatment of ischemic stroke. Aim of the studyThe study aims to investigate the interaction between autophagy and pyroptosis regulated by HQDG through the AMPK/mTOR signaling pathway during cerebral I/R injury. Materials and methodsModel of middle-cerebral artery occlusion/reperfusion (MCAO/R) in SD rats was established using the Longa suture method. The components of traditional Chinese medicine were detected by liquid chromatography coupled to quadrupole orbitrap high resolution mass spectrometry (LC/MS). Neurological deficits were evaluated by neurological function score. Changes of cerebral blood flow were detected by a laser speckle blood flow imaging instrument. The volume of cerebral infarction was observed by 2,3,5-Chlorotriphenyltetrazolium (TTC) staining. The permeability of the blood-brain barrier was measured by Evans blue test. Neurovascular unit and autophagosomes in brain tissue were assessed by transmission electron microscopy. Neuronal pyroptosis was detected by terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL)/Caspase-1 staining. The expression of autophagy related proteins, pyroptosis related proteins, and AMPK/mTOR pathway related proteins were detected by Western blot. ResultsAfter cerebral I/R injury, autophagy and pyroptosis, were characterized by increased number of autophagosomes and pyroptosis cells, upregulated expression of Beclin 1, LC3-II/LC3-I, NLRP3, cleaved Caspase-1, IL-1beta, IL-18 proteins, and downregulated expression of P62 proteins. HQDG significantly improved neurological function, reduced the volume of cerebral infarction, increased cerebral blood flow, improved blood-brain barrier permeability and the function of neurovascular units. Autophagy was further activated and pyroptosis was significantly inhibited by HQDG, which promoted increased number of autophagosomes, enhanced expression of Beclin 1, LC3-II/LC3-I proteins, reduced expression of P62, NLRP3, cleaved Caspase-1, IL-1beta, and IL-18 proteins, and downregulated the number of pyroptosis cells. On the other hand, after administering 3-Methyladenine (3-MA) to inhibit autophagy, the above effects of HQDG were significantly inhibited. Besides, HQDG promoted AMPK phosphorylation, and weakened mTOR phosphorylation. However, after the administration of AMPK inhibitor Compound C, HQDG caused increase in Beclin 1 and LC3-II/LC3-I, reduced P62 and NLRP3, and cleaved Caspase-1 protein expression, whereas cerebral blood flow decreased. ConclusionHQDG alleviated pyroptosis by promoting autophagy via AMPK/mTOR signaling pathway after middle-cerebral artery occlusion/reperfusion in rats, showing its potential for treatment of cerebral I/R injury in humans.
Read full abstract