For transmission tower-line (TL) systems, the coupling effect between line cables and towers under strong winds is significant. This paper presents a method to quantify the coupling effect. Assuming that effective separation of line cables and towers is attainable, this work transforms the coupling effect into the transferred load from the line cable to the target tower, the coupling participation mass of the line cable, and the additional damping. The effective separation conditions are defined through an optimization method minimizing the residual errors of the wind-induced response and dynamic characteristics between the separated bodies and the TL system. A typical TL system is considered and analyzed for its structural dynamic characteristics and wind-induced response. Particularly, the quantities associated with the coupling effect of the TL system are estimated. It reveals that the transferred dynamic load component parallel to the line cable which is overlooked in current codes is significant and highly sensitive to the separation boundary conditions of line cables. Furthermore, the coupling participation mass of the conductor is more prominent than that of the ground wire. The proposed method is feasible for quantifying the TL coupling effect and incorporating it into the wind-induced response analysis of transmission line structures.
Read full abstract