The study of hardware and software systems is of major are very important advent in new devices for communication and progress in system of security. In fast pace mobile and embedded devices application in every day’s life leads some new emerging area for research in data mining field. In this we have some technologies which have demand and error free using the principle of component of PPCA. For Embedded system the applications of PCA is basically applied initially for the lessen the having different qualities especially being to simple of the data. PPCA which have the updated version of PCA which is surveyed by similarity measure. In this work, experiments are extensively carried out, using a FPGA based light weight cryptographic data set having benchmark set to check and illustrate the viability, competence, litheness which are reconfigurable embedded system which are having data mining . Which have FPGA are reconfigurable for the computing architectures for hardware and in neural network. FPGA using the multilayer Cascaded for neural network which are forward in nature (CFFNN) and Deep Neural Network also called as DNN with a huge neuron is still a thought-provoking task. This shortcoming leads to elect the FPGA capacity for a particular application we have used the method of implementation which has two neural network have been implemented and compared , namely, CFFNN and DNN. It can be shown that for reconfigurable embedded system, PPCA based data mining and Machine learning based realization can give more speed up less iteration and more space savings when we have compared it with the static conventional version.