Hepatic encephalopathy (HE) is a neuropsychiatric complication of acute liver failure or chronic liver injury. Liver dysfunction impairs ammonia detoxification, allowing it to cross the blood-brain barrier (BBB) and disrupt brain function. The hippocampus becomes a crucial target during elevated ammonia levels, causing spatial memory impairment and decreased learning ability. Leuprolide acetate (LA), a GnRH agonist, has been implicated in neuroprotection and neuroregeneration in several regions of the central nervous system (CNS) including hippocampus. In this study, we aim to evaluate the effects of LA treatment on hippocampus of rats with HE induced by portocaval anastomosis (PCA) trough cognitive tests, histology analysis and expression of neuronal recovery marker proteins, such as neurofilament (NF200) and neurabin II, and astrocyte marker glial fibrillary acidic protein (GFAP). Rats were divided into three groups: SHAM, portocaval anastomosis with saline solution (PCA + SS) and portocaval anastomosis treated with LA (PCA + LA). To evaluate learning and spatial memory elevated T-maze (ETM) and Y-maze test (YMT) were respectively used. Results indicated that LA-treated rats performed significantly better in ETM and YMT than untreated rats. Histological analysis of hippocampus showed increased neuron density, nuclear area, and layer thickness in dentate gyrus of PCA + LA group compared to PCA + SS. Additionally, neurabin II and NF200 expression were higher in LA-treated rats, while GFAP expression was elevated in the PCA + SS group compared to control and PCA + LA groups. In conclusion, LA enhances hippocampal neuron recovery and reduces astrogliosis, suggesting its potential as a therapeutic intervention for attenuating hippocampal damage during HE.
Read full abstract