The objective of this study was to identify the locations of deep-seated gravitational slope deformations (DGSDs) and define the numerical characteristics of these deformations to contribute to the sustainable management of social infrastructure in the event of an increased disaster. The topographic features of the DGSDs were quantitatively characterized based on their surface morphologies. Topographic features indicative of gravitational deformation in pre-slide topographic maps, such as terminal cliff failures, irregular undulations, and gullies, suggest that progressive deformation occurred over a prolonged period. To track the gravitational deformation over time, we interpreted aerial photographs of DGSDs from 1948 and 2012 associated with deep-seated landslides on the Kii Peninsula induced by Typhoon Talas on 2–5 August 2011. Corresponding numerical analysis of the gravitational deformations using 1 m digital elevation models reveals that landslide areas exhibit eight characteristic influencing factors, demonstrating that characteristic morphologies exist in areas that eventually experience landslides. One such morphological feature is the existence of a gently sloping area in the upper section of the deep-seated landslide mass, which comprises a catchment basin without a corresponding valley or gully. These findings suggest that rainwater penetrates the ground, and degrades and deforms the rock within the landslide mass, causing the slope to fail after torrential rainfall. This study holds great significance for advancing sustainable infrastructure development and management and mitigating environmental changes.