Field-theoretic simulations are numerical treatments of polymer field theory models that go beyond the mean-field self-consistent field theory level and have successfully captured a range of mesoscopic phenomena. Inherent in molecularly-based field theories is a "signproblem" associated with complex-valued Hamiltonian functionals. One route to field-theoretic simulations utilizes the complex Langevin (CL) method to importance sample complex-valued field configurations to bypass the signproblem. Although CL is exact in principle, it can be difficult to stabilize in strongly fluctuating systems. An alternate approach for blends or block copolymers with two segment species is to make a "partial saddle point approximation" (PSPA) in which the stiff pressure-like field is constrained to its mean-field value, eliminating the signproblem in the remaining field theory, allowing for traditional (real) sampling methods. The consequences of the PSPA are relatively unknown, and direct comparisons between the two methods are limited. Here, we quantitatively compare thermodynamic observables, order-disorder transitions, and periodic domain sizes predicted by the two approaches for a weakly compressible model of AB diblock copolymers. Using Gaussian fluctuation analysis, we validate our simulation observations, finding that the PSPA incorrectly captures trends in fluctuation corrections to certain thermodynamic observables, microdomain spacing, and location of order-disorder transitions. For incompressible models with contact interactions, we find similar discrepancies between the predictions of CL and PSPA, but these can be minimized by regularization procedures such as Morse calibration. These findings mandate caution in applying the PSPA to broader classes of soft-matter models and systems.
Read full abstract