The use of spectral reconstruction (SR) to recovery RGB images to full-scene hyperspectral image (HSI) is an important measure to achieve real-time and low-cost HSI applications. Taking the detection of glutamic acid index for 360 beef samples as an example, the feasibility of using 11 state-of-the-art reconstruction algorithms to achieve RGB to HSI in complex food systems was investigated. The multivariate correlation analysis was used to prove that RGB is a projection of three-channel comprehensive coverage wide-band information. The comprehensive quality attributes (PSNR-Params-FLOPS) was proposed to determine the optimal reconstruction model (MST++, MST, MIRNet, and MPRNet). Moreover, SSIM values and t-SNE were introduced to evaluate the consistency of the reconstruction results. Finally, Lightweight Transformer was used to establish the detection models of Raw-HSI, RGB and SR-HSI for the prediction of glutamic acid index for beef. The results showed that the MST++ model exhibited the best performance in SR, with RMSE, PSNR, and SSIM values of 0.015, 36.70, and 0.9253, respectively. Meanwhile, the prediction effect of MST++ (R2P = 0.8422 and RPD = 2.46) reconstructed was close to the Raw-HSI (R2P = 0.8526 and RPD = 2.69). The results provide practical application scenarios and detailed analysis ideas for RGB-to-HSI.
Read full abstract