The placement of root filling materials aims to prevent the occurrence of post-treatment apical periodontitis following completion of endodontic treatment. Materials should possess properties that will not permit bacterial invasion and infection, namely excellent sealing ability and/or antibacterial properties. In root-end filling procedures or repair of root perforations, the root filling materials are placed in a particularly challenging clinical environment, as they interface with a relatively large area with the periradicular tissues. The biological properties of these materials are therefore of significant importance. The current review discusses the most widely used materials for endodontic surgery (i.e., root-end filling and perforation repair), with particular focus on their biological characteristics, namely antibacterial properties and interactions with host tissue cells, together with clinical studies. Properties of amalgam, glass ionomer cements (GICs), resin systems, zinc oxide eugenol-based cements and hydraulic calcium silicate cements (HCSCs), together with representative and well-researched commercial materials in the context of their use in endodontic surgery are presented. While the use of HCSCs seems to offer several biological advantages, together with addressing issues with the initial formulation in the most recent versions, materials with different chemical compositions, such as zinc oxide eugenol-based cements, are still in use and appear to provide similar clinical success rates to HCSCs. Thus, the significance of the currently available materials on clinical outcomes remains unclear.
Read full abstract