Abstract In this paper, let X be a finite set, D be a complete X-semilattice of unions and Q = { T 1 , T 2 , T 3 , T 4 , T 5 , T 6 , T 7 , T 8 } $Q=\lbrace T_1,T_2,T_3,T_4,T_5, T_6,T_7,T_8\rbrace $ be an X-subsemilattice of D where T 1 ⊂ T 3 ⊂ T 5 ⊂ T 6 ⊂ T 8 $T_1\subset T_3\subset T_5\subset T_6\subset T_8$ , T 1 ⊂ T 3 ⊂ T 5 ⊂ T 7 ⊂ T 8 $T_1\subset T_3\subset T_5\subset T_7\subset T_8$ , T 2 ⊂ T 3 ⊂ T 5 ⊂ T 6 ⊂ T 8 $T_2\subset T_3\subset T_5\subset T_6\subset T_8$ , T 2 ⊂ T 3 ⊂ T 5 ⊂ T 7 ⊂ T 8 $T_2\subset T_3\subset T_5\subset T_7\subset T_8$ , T 2 ⊂ T 4 ⊂ T 5 ⊂ T 6 ⊂ T 8 $T_2\subset T_4\subset T_5\subset T_6\subset T_8$ , T 2 ⊂ T 4 ⊂ T 5 ⊂ T 7 ⊂ T 8 $T_2\subset T_4\subset T_5\subset T_7\subset T_8$ , T 2 ∖ T 1 ≠ ∅ $T_2\setminus T_1\ne \emptyset $ , T 1 ∖ T 2 ≠ ∅ $T_1\setminus T_2\ne \emptyset $ , T 4 ∖ T 3 ≠ ∅ $T_4\setminus T_3\ne \emptyset $ , T 3 ∖ T 4 ≠ ∅ $T_3\setminus T_4\ne \emptyset $ , T 6 ∖ T 7 ≠ ∅ $T_6\setminus T_7\ne \emptyset $ , T 7 ∖ T 6 ≠ ∅ $T_7\setminus T_6\ne \emptyset $ , T 2 ∪ T 1 = T 3 $T_2\cup T_1=T_3$ , T 4 ∪ T 3 = T 5 $T_4\cup T_3=T_5$ , T 6 ∪ T 7 = T 8 $T_6\cup T_7=T_8$ . Using the characteristic family of sets, the characteristic mapping and base sources of Q, we characterize the class whose elements are each isomorphic to Q. We generate some advanced formulas in order to calculate the number of regular elements α of B X (D) satisfying V ( D , α ) = Q $V(D,\alpha )=Q$ , in an efficient way.