We measure double differential cross sections (DDCS) of electrons emitted from CH4 molecules in collisions with 250 keV protons. The projectile ions are obtained from a 400 kV electron cyclotron resonance-based ion accelerator (ECRIA). We study the energy and angular distributions of the electron DDCS. The observed double and single differential and the total cross section are compared with the state-of-the-art continuum distorted wave eikonal initial state (CDW-EIS) model predictions. Two different approaches are used considering the different target descriptions: complete neglect of differential overlap (CNDO) and molecular orbital (MO) approximations. The MO model uses two different scaling parameters (d = 0.7 and 1.0). In the energy distribution of the DDCS, the carbon KLL Auger line is also observed at 240 eV. The single differential cross section (SDCS) and total cross section (TCS) are derived. Both the MO-based CDW-EIS models are in good agreement with the experimental results; however, the CNDO approach overestimates the data.
Read full abstract