Consider the following edge-coloring of a graph G. Let H be a graph possibly with loops, an H-coloring of a graph G is defined as a function c:E(G)→V(H).\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$c : E(G) \\rightarrow V(H).$$\\end{document} We will say that G is an H-colored graph whenever we are taking a fixed H-coloring of G. A cycle (x0,x1,…,xn,x0),\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(x_0,x_1,\\ldots ,x_n,x_0),$$\\end{document} in an H-colored graph, is an H-cycle if and only if (c(x0x1),c(x1x2),…,c(xnx0),\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(c(x_0x_1),c(x_1x_2),\\ldots , c(x_nx_0),$$\\end{document}c(x0x1))\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$c(x_0x_1))$$\\end{document} is a walk in H. Notice that the graph H determines what color transitions are allowed in a cycle in order to be an H-cycle, in particular, when H is a complete graph without loops, every H-cycle is a properly colored cycle. In this paper, we give conditions on an H-colored complete graph G, with local restrictions, implying that every vertex of G is contained in an H-cycle of length at least 5. As a consequence, we obtain a previous result about properly colored cycles. Finally, we show an infinite family of H-colored complete graphs fulfilling the conditions of the main theorem, where the graph H is not a complete k-partite graph for any k in N.\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathbb {N}}.$$\\end{document}
Read full abstract