Cronobacter sakazakii, an opportunistic foodborne pathogen, has a strong resistance to osmotic stress and desiccation stress, but the current studies cannot elucidate this resistance mechanism absolutely. A mechanosensitive channel MscM was suspected of involving to desiccation resistance mechanism of C. sakazakii. To investigate the specific molecular mechanism, the mscM mutant strain (ΔmscM) was constructed using the homologous recombination method, and the cpmscM complementary strain was obtained by gene complementation, followed by the analysis of the difference between the wild-type (WT), mutant, and complementary strains. Compared to the wild-type bacteria (WT), the inactivation rate of the ΔmscM strain decreased by 15.83% (p < 0.01) after desiccation stress. The absence of the mscM gene led to an increase in the membrane permeability of mutant strains. Through turbidity assay, it was found that the intracellular content of potassium ion (K+) of the ΔmscM strain increased by 2.2-fold (p < 0.05) compared to the WT strain, while other metal ion contents, including sodium ion (Na+), calcium ion (Ca2+), and magnesium ion (Mg2+), decreased by 48.45% (p < 0.001), 24.29% (p < 0.001), and 26.11% (p < 0.0001), respectively. These findings indicate that the MscM channel primarily regulates cell membrane permeability by controlling K+ efflux to maintain the homeostasis of intracellular osmotic pressure and affect the desiccation tolerance of bacteria. Additionally, the deletion of the mscM gene did not affect bacterial growth and motility but impaired surface hydrophobicity (reduced 20.52% compared to the WT strain, p < 0.001), adhesion/invasion capability (reduced 26.03% compared to the WT strain, p < 0.001), and biofilm formation ability (reduced 30.19% compared to the WT strain, p < 0.05) of the bacteria. This study provides a reference for the role of the mscM gene in the desiccation resistance and biofilm formation of C. sakazakii.
Read full abstract