Disorder of complement response is a significant pathogenic factor causing some autoimmune and inflammation diseases. The Ornithodoros moubata Complement Inhibitor (OmCI), a small 17 kDa natural protein, was initially extracted from soft tick salivary glands. The protein was found binding to complement C5 specifically, inhibiting the activation of the complement pathway, which is a successful therapeutic basis of complement-mediated diseases. However, a short half-life due to rapid renal clearance is a common limitation of small proteins for clinical application. In this study, we extended the half-life of OmCI by modifying it with fatty acid, which was a method used to improve the pharmacokinetics of native peptides and proteins. Five OmCI mutants were initially designed, and single-site cysteine mutation was introduced to each of them. After purification, four OmCI mutants were obtained that showed similar in vitro biological activities. Three mutants of them were subsequently coupled with different fatty acids by nucleophilic substitution. In total, 15 modified derivatives were screened and tested for anticomplement activity in vitro. The results showed that coupling with fatty acid would not significantly affect their complement-inhibitory activity (CH50 and AH50). OmCIT90C-CM02 and OmCIT90C-CM05 were validated as the applicable OmCI bioconjugates for further pharmacokinetic assessments, and both showed improved plasma half-life in mice compared with unmodified OmCI (15.86, 17.96 vs 2.57 h). In summary, our data demonstrated that OmCI conjugated with fatty acid could be developed as the potential long-acting C5 complement inhibitor in the clinic.
Read full abstract