A hypothesis-forming exploratory cross-sectional assessment was conducted to assess the occurrence and relevance of Gram-positive rod-shaped bacteria like Corynebacterium spp. and Actinomycetaceae in human urine samples. In total, 1170 urine samples from 1031 inpatients with suspected urinary tract infection were assessed for culture-based growth of Gram-positive rod-shaped bacteria applying API Coryne assays, matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS), and in-house 16S rRNA gene sequencing. Overall, 502 different bacterial colonies from 346 urine samples taken from 324 inpatients were observed. The three quantitatively most abundant genera or genus clusters were Corynebacterium (254 isolates, 62%), Actinomyces/Winkia (79 isolates, 19%), and Actinotignum/Actinobaculum (29 isolates, 7%). Compared to sequencing, the diagnostic accuracy of all assessed competitor assays from the diagnostic routine was <80% for differentiation on the genus level and <30% for differentiation on the species level. Prolongated incubation for 4 days compared to 2 days resulted in additional detection of 15% of the totally recorded Gram-positive rod-shaped bacteria. An approximately 5-fold increased detection rate in mid-stream urine compared to urine acquired applying alternative sampling strategies was observed. In conclusion, in the rare event of the suspected clinical relevance of such findings, confirmatory testing with invasively sampled urine should be considered due to the high contamination rate observed in mid-stream urine. Confirmatory testing by DNA-sequencing methods should be considered if an exact identification of genus or species is regarded as relevant for the individual choice of the therapeutic strategy.