Answering to a long-standing question raised by Shapiro and Sundberg in 1990, Choe et al. have recently obtained a characterization for compact differences of composition operators acting on the Hilbert-Hardy space over the unit disk. Their characterization is described in terms of certain Bergman-Carleson measures involving derivatives of the inducing maps. In this paper, based on such results, we take one step further to obtain a completely new characterization, which is more intuitive and much simpler. In particular, our new characterization does not involve derivatives of the inducing maps and includes the Reproducing Kernel Thesis characterization. Moreover, our proofs are constructive enough to yield optimal estimates for the essential norms.