Combining algebro-geometric methods and factorization techniques for finite difference expressions we provide a complete and self-contained treatment of all real-valued quasi-periodic finite-gap solutions of both the Toda and Kac-van Moerbeke hierarchies. In order to obtain our principal new result, the algebro-geometric finite-gap solutions of the Kac-van Moerbeke hierarchy, we employ particular commutation methods in connection with Miura-type transformations which enable us to transfer whole classes of solutions (such as finite-gap solutions) from the Toda hierarchy to its modified counterpart, the Kac-van Moerbeke hierarchy, and vice versa.
Read full abstract